

Mill scale-derived hematite as a low-cost supercapacitor electrode material

Ozan Aydin¹, Metin Gencten¹, Burak Birol¹

¹ Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Metallurgy and Materials Engineering, 34210 Istanbul, Turkey

Energy has become an increasingly critical need in modern societies. Sectors such as industry, transportation, agriculture, and healthcare rely on a continuous power supply, making energy production and management a strategic priority. In this context, the efficient storage and reuse of energy through high-performance storage systems have gained great importance [1].

Due to the limitations of conventional storage systems like lithium-ion and lead-acid batteries, supercapacitors have attracted growing interest as next-generation electrochemical energy storage devices. Their key advantages include long cycle life (>1000 cycles), lightweight structure, fast charge-discharge capability, and reliable operation over a wide temperature range [2]. Transition metal oxides are commonly used as electrode materials in supercapacitors because their multiple oxidation states enable redox reactions that enhance specific capacitance and energy density [3]. However, their high production cost limits commercial use. Utilizing recycled waste-derived materials as electrodes offers a cost-effective and environmentally sustainable alternative [4,5].

Mill scale is a brittle layer of iron oxide formed on steel surfaces during high-temperature processes such as hot rolling or heat treatment. It mainly consists of FeO, Fe₃O₄, and Fe₂O₃, depending on the processing conditions [6]. Although often treated as waste, its high iron oxide content makes it a promising low-cost electrode material for energy storage applications.

In the present study, mill scale was subjected to chemical treatment using sulfuric acid (H₂SO₄) solutions to leach iron ions. The pH of the resulting solution was carefully adjusted to facilitate the precipitation of iron hydroxide. Subsequently, a thermal treatment was applied to convert the precipitate into hematite (Fe₂O₃). The structural and morphological properties of the synthesized Fe₂O₃ were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses, which provided insights into its crystallographic phases and surface morphology, respectively. The obtained

Fe₂O₃ was then utilized as an active electrode material in the fabrication of asymmetric coin-cell supercapacitors. The electrochemical performance of the assembled supercapacitors was systematically evaluated through a series of electrochemical techniques, including cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge-discharge (GCD) measurements. These analyses were employed to assess key performance metrics such as specific capacitance, charge-discharge capability, and the cycling stability of the Fe₂O₃-based supercapacitors.

Acknowledgment

This work has been supported by Yildiz Technical University Scientific Research Projects Coordination Unit under project number FBA -2025-7143. O. Aydin would like to express his gratitude for the support of the TÜBİTAK BİDEB-2211-A Program. Moreover, M. Gencten thanks to Turkish Academy of Sciences for Outstanding Young Scientists Awards (GEBİP).

References

- [1] O.O. Yolcan, Innovation and Green Development 2 (2023) 100070
- [2] J. Libich, J. Máca, J. Vondrák, O. Čech, M. Sedláříková, J Energy Storage 17 (2018) 224–227
- [3] S. Karthikeyan, B. Narendiran, A. Sivanantham, L.D. Bhatlu, T. Maridurai, Mater Today Proc, (2020) 3984–3988.
- [4] L. Ojeda, R. Mendoza, M. Vazquez-Lepe, K.P. Padmasree, V. Rodriguez-Gonzalez, G. Gonzalez-Contreras, J. Oliva, Ceram Int 48 (2022) 35495–35506.
- [5] R. Mendoza-Jiménez, J. Oliva, A.I. Mtz-Enriquez, V. Rodriguez-Gonzalez, S. Diaz-Castañon, New J Chem 46 (2022).
- [6] M.C. Bagatini, V. Zymla, E. Osório, A.C.F. Vilela, ISIJ International 51 (2011) 1072–1079.

Burak Birol received his B.Sc. (2004), M.Sc. (2007), and Ph.D. (2013) degrees in Metallurgical and Materials Engineering from Yildiz Technical University. He is currently an Associate Professor in the same department. His research interests include extractive metallurgy, recycling technologies, waste valorization, and energy storage systems.

Presentating author: Burak Birol, e-mail: burak.birol@gmail.com

tel: +90 5356178166