

Improving Zinc Anode Stability and Efficiency in Alkaline Rechargeable Batteries

Beyzanur Acar¹, A. Engin Serin² and A. Gul Ozturk³, Ozgur Darıcıoglu², Tayfur Ozturk^{2,3}

¹Department of Chemical Engineering, Ankara University, Ankara, Türkiye

²Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara, Türkiye

³Innovascope Materials Technologies Ltd. Sti, Ankara, Türkiye

Zn-Ni and Zn-air rechargeable batteries are seen as promising candidates for next-generation energy storage, providing benefits including safety, abundant resources, environmental friendliness, low-cost, and sufficient energy density. Nevertheless, their practical application remains limited due to the instability of Zn anodes, where dendrite formation and hydrogen evolution reaction (HER) dramatically compromise cyclic stability and performance of battery. [1]

Zinc is highly susceptible to corrosion in alkaline electrolytes, leading to uneven surface morphology and the formation of insulating by-products such as ZnO and Zn(OH)₂. These passivation layers block active sites, lower Coulombic efficiency, and promote further surface degradation. Corrosion also drives inhomogeneous Zn dissolution and redeposition, which contributes to the shape change problem.

Non-uniform deposition during repeated Zn plating and stripping causes the creation of needle-like dendritic structures. These dendrites continue to grow and finally reach the cathode, resulting in internal short circuits, dead zinc formation, and sudden capacity drop.

The hydrogen evolution reaction takes place as an undesirable outcome of cycling, consuming electrolyte and generating gas bubbles. These bubbles block active sites, create internal pressure, and may cause swelling or bulging of cells. Local current density fluctuations resulting from gas evolution lead to non-uniform Zn deposition, accelerating dendritic growth and anode degradation.

Electrochemical tests were conducted in a Swagelok cell. The anode was prepared using 80 wt% arc-sprayed Zn/ZnO powder (Zn core with a thin ZnO shell) produced in the lab, 10 wt% carbon black, and 10 wt% PTFE. PTFE was first dispersed in 4 mL of an ethanol/water mixture and stirred for 10–15 min, followed by the addition of carbon black and Zn/ZnO powder, and mixed for 1 h to form a slurry. The slurry was applied onto Cu foam, dried at 60 °C overnight, and

pressed at 20 MPa. Commercial Ni(OH)₂ electrodes were used as cathodes. The electrolyte was 6 M KOH saturated with 0.35 M ZnO, and a polypropylene (PP) cloth was used as the separator.

Bare Zn/ZnO anode showed poor performance with rapid capacity fading and high HER. To suppress HER, Bi₂O₃ was introduced as an additive. Adding 3 wt% Bi₂O₃ increased the capacity from 15 to 300 mAh/g and partly suppressed HER. Furthermore, adding 0.5 M LiOH into the electrolyte improved cycle life and stability, while providing better HER control.

For further improvement, carbon coating was applied. Glucose was dissolved in DI water and 1 g of active material was added. The mixture was stirred for 1 h, dried overnight at 60 °C, and then pyrolyzed in a tube furnace under nitrogen at 400 °C for 2 h with a heating rate of 3.33 °C/min. The obtained powder was cooled and used for electrode preparation.

Recent studies showed that carbon-coated Zn/ZnO anodes combined with these additives provide longer cycle life and higher capacity. As a result, HER was effectively suppressed and no significant capacity fading was observed up to the 50th cycle.

The ongoing study aims to achieve further improvements in both capacity and stability.

Acknowledgment

The support was provided by the Scientific and Technological Research Council of Turkey (TUBITAK) with a project number 123M130, which the authors gratefully acknowledge.

References

[1] F. Mo, N. He, L. Chen, M. Li, S. Yu, J. Zhang, W. Wang, J. Wei, *Front. Chem.*, 9 (2022) 8226

Beyzanur Acar graduated from the Department of Chemical Engineering at Ankara University in 2024. She is now a TÜBİTAK project researcher in the Department of Metallurgical and Materials Engineering at Middle East Technical University. Her research interests include the development of iron and zinc anodes to enhance performance in alkaline rechargeable batteries.

Presenting author: Beyzanur Acar, e-mail: beyzacar29@gmail.com

tel: +905426155296