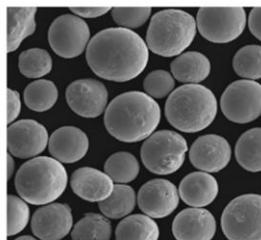


Hydrogen Processing of Ti6Al4V turnings for fabrication of fine powders for additive Manufacturing

Zeynep Ege Uysal^{1,2}, Sertaç Altıñok², Yunus Eren Kalay^{1,3} and Tayfur Öztürk^{1,3,4}

¹Dept. of Metallurgical and Materials Engineering, Middle East Technical University(METU), Ankara

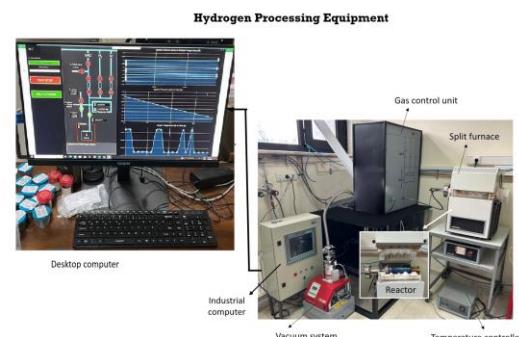
²Turkish Aerospace Industries Inc. Ankara


³ENDAM, Center for Energy Materials and Storage Devices, METU, Ankara

⁴INNOVASCOPE Materials Technologies Ltd Sti

Ti6Al4V is widely used in aerospace, biomedical, and other industries due to its high strength-to-weight ratio, corrosion resistance, and high-temperature performance. Additive manufacturing (AM) enables near-net-shape production with significantly reduced waste. Among AM techniques, selective laser melting (SLM) is the most widely used for Ti6Al4V, and it requires fine (15–53 µm) spherical powders. This study investigates a recycling route to produce such powders from

Oxygen: 1.17 wt.%
Nitrogen: 0.16 wt.%
Hydrogen: 0.85 wt.%
Carbon: 6.89 wt.%


Oxygen: ≤0.2 wt.%
Nitrogen: ≤0.05 wt.%
Hydrogen: ≤0.015 wt.%
Carbon: ≤0.08 wt.%

Motivation is to recycle contaminated turnings into fine Grade 3 spherical powders (<53 µm)

Ti6Al4V shavings. In this route, cleaned chips are hydrogenated, milled, and plasma spheroidized into spherical powders. To determine conditions of hydriding, chips were hydrided isothermally for a fixed duration at temperatures from 450 to 650 °C. This showed that the amount of hydrogen absorbed increased with increasing temperature. Then, pressure-controlled experiments were carried out. This was challenging since hydrogen absorption leads to an uncontrolled rise in temperature. Hydriding, therefore, was carried out with flow-controlled delivery. This showed that

chips can be hydrided to 3.3 wt.% at 400 °C for a duration of 5 hours. The hydrided chips were milled with a tumbling ball-mill, which resulted in powders of irregular shape (<53 µm) due to their brittleness.

Irregularly shaped fine powders were spheroidized in RF thermal plasma 25 kW. The powders were fed into the torch from 15 to 5 g/min. 10 g/min provided the best balance between spheroidization and process efficiency.

Equipment used for hydrogen processing of the turnings. The reactor where turnings are treated is inside the split furnace. The equipment is a PCT apparatus (house built and improved over a period of 10 years) adapted for the purpose

It is concluded that direct spheroidization of hydrided powders in the plasma reactor results in desorption of hydrogen which adversely affect the temperature distribution in the reactor. Possible routes for successful processing of plasma spheroidization are discussed

Tayfur Öztürk is an adjunct professor in the Department of Metallurgical and Materials Engineering, Middle East Technical University. He earned his Ph.D. in Materials Science at Cambridge University in 1978 and his B.Sc. degree from Istanbul Technical University in 1973. Before joining METU, he worked as a post-doc at Sheffield University and Istanbul Technical University. While a faculty member at METU, he was a visiting scholar at McMaster University in 1989 and Los Alamos National Laboratory, 1990. His research interest focuses on rechargeable alkaline batteries, metal hydrides, nanopowder synthesis, thermal plasma processing of materials. He is the founder of ENDAM, i.e. Center for Energy Materials and Storage Devices. He is the initiator of mESC-IS series of international symposia organized each year now as well as of the summer school, mESC-School organized biennially in Türkiye.

Corresponding author: Tayfur Öztürk, e-mail: ozturk@metu.edu.tr, Tel: +90(312)210 5935