

Study of LATP ceramics for subsequent fabrication of thin film electrolytes

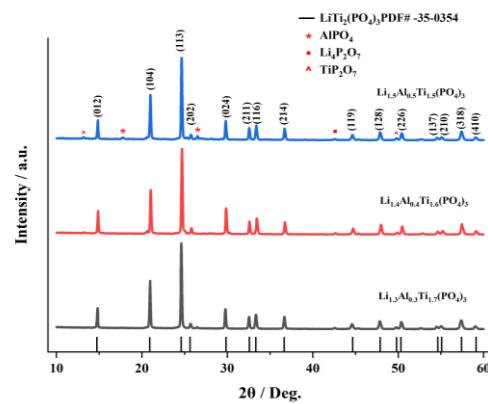
Ayazhan Bekmakhanova^{1, 2}, Zhansaya Bakhytzhanova^{1, 2}, Mukagali Yegamkulov^{1, 4},
Zhumabay Bakenov^{1, 3, 4}, Aliya Mukanova^{1, 3, 4*}

¹National Laboratory Astana, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan

²Department of Chemistry, Faculty of Nature Sciences, L.N. Gumilyov Eurasian National University, Kazhymukan str. 13, Astana 010000, Kazakhstan

³Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan

⁴Institute of Batteries LLC, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan
*aliya.mukanova@nu.edu.kz


In recent years, solid lithium-ion batteries (SLIBs) have attracted increased interest due to their safety, high energy efficiency, and wide range of applications, from portable electronics to electric vehicles. One of the key components of such batteries is a solid electrolyte, which provides reliable and stable conductivity of lithium ions, as well as stability at the interface with the electrodes [1].

Among the many solid electrolytes studied, special attention is paid to materials with a NASICON-like structure, in particular lithium-aluminum-titanium-phosphate (LATP) compounds. These materials have a number of valuable characteristics, including high ionic conductivity, chemical inertness, and thermal stability, which makes them promising for use in modern SLIBs [2–3].

This study investigates the influence of different lithium concentrations in LATP on its structural and electrochemical properties, synthesized using the molten flux method.

To evaluate the ionic conductivity and study the effect of composition on the transport properties of LATP, studies were carried out using the electrochemical impedance spectroscopy (EIS) method. Measurements were performed in the frequency range from 1 MHz to 1 Hz with an amplitude of 0.01 V at temperatures of 25°C and 85°C for samples with different lithium content (Li_{1.3}, Li_{1.4}, Li_{1.5}).

X-ray diffraction (XRD) analysis confirmed the formation of the main phase LATP in all the studied samples. However, with increasing lithium content, the formation of secondary phases (Li₄P₂O₇, Ti₂P₂O₇, AlPO₄), was observed, which can potentially reduce the ionic conductivity of the material. These structural changes are shown in **Figure 1**.

Figure 1. XRD patterns of LATP

Extensive characterization of the materials and corresponding electrochemical performance will be presented and discussed at the conference.

In a broader sense, precise selection of the composition of ceramic electrolytes is important to ensure stable ionic conductivity and can be further used to obtain thin-film electrolyte for microbatteries.

Acknowledgment

This research was funded by the research project AP19680567 “Advanced nanocomposite 3D thin film electrodes for lithium-ion batteries” from the Ministry of Science and Higher Education of the Republic of Kazakhstan.

References

- [1] Hou, M., et al. *Nanotechnology*, 31, 132003 (2020). <https://doi.org/10.1088/1361-6528/ab5be7>
- [2] Kundu, S., Kraytsberg, A., & Ein-Eli, Y. *Journal of Solid State Electrochemistry*, 26, 180–1838 (2022). <https://doi.org/10.1007/s10008-022-05206-x>
- [3] Waetzig, K., et al. *Journal of Alloys and Compounds*, 818, 153237 (2020). <https://doi.org/10.1016/j.jallcom.2019.153237>

Ayazhan Bekmakhanova is a Master's student at L.N. Gumilyov Eurasian National University, having completed her Bachelor's degree there in 2024. She conducts her research at the National Laboratory Astana, Nazarbayev University. Her research focuses on the study of thin-film electrolytes for solid-state batteries, with an emphasis on enhancing ionic conductivity.

Ayazhan Bekmakhanova, e-mail: ayazhan.bekmakhanova@nu.edu.kz tel: +7 771 451 45 05