
Electrochemical Characterization of Cobalt Hydroxide Based Materials

Caner KORKMAZ¹, Berk ÇOBAN¹, Ayşe HACINECİPOĞLU¹ and Metin GENÇTEN¹

¹Yıldız Technical University, Metallurgical and Materials Engineering Department, 34220, İstanbul, Turkey

The increasing environmental damage caused by fossil fuel consumption has prompted significant research into alternative and more environmentally friendly energy storage systems. Among these, supercapacitors have attracted considerable attention due to their high power density and specific capacitance. The choice of electrode material plays a critical role in determining the electrochemical performance of supercapacitors [1]. Commonly used electrode materials include carbon-based materials, conductive polymers, and various metal oxides. Among the metal oxides, ruthenium oxide exhibits superior electrochemical properties; however, its high cost and toxicity associated with production limit its widespread application [2]. In this regard, cobalt-based materials, particularly cobalt oxide and cobalt hydroxide, emerge as promising alternatives due to their specific capacitance values that are comparable to those of ruthenium oxide.

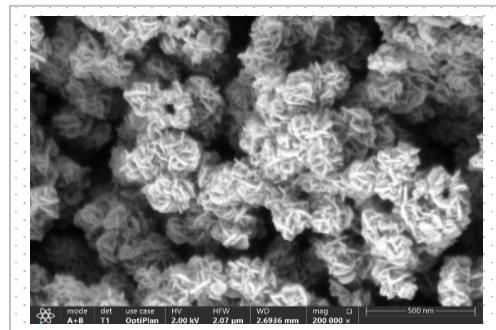

In this study, to address the aforementioned limitation, cobalt oxide and cobalt hydroxide materials with a nanoflower-like morphology were synthesized via an electrodeposition method using cobalt nitrate and potassium chloride as precursor components. The electrodeposition process, monitored using cyclic voltammetry, is illustrated in Figure 1.

Figure 1: Cyclic voltammogram of Pt electrode in the cobalt nitrate solution in the potential range of -1.8 V to 1.6 V vs. Ag/AgCl (in 3 M KCl)

Comprehensive characterization was performed through XRD, SEM, XPS, and BET analyses, all of which

confirmed the desirable morphological and structural features of the synthesized materials. Figure 2 shows the SEM picture of synthesized cobalt hydroxide. Nonetheless, a major drawback of cobalt-based materials is that their morphological characteristics—illustrated in Figure 2—typically require complex synthesis methods to be effectively controlled [3]. Additionally, electrochemical performance was evaluated using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge-discharge (GCD) tests, yielding promising results. Due to their high capacity and specific capacitance over extended cycling, cobalt oxide materials with a nanoflower-like structure are considered strong candidates for next-generation supercapacitor electrode materials.

Figure 2: FESEM Analysis of Cobalt Hydroxide at 200,000× Magnification

Acknowledgment

M. Gençten thanks to the Outstanding Young Scientist Award (GEBIP) program of the Turkish Academy of Sciences (TÜBA).

References

- [1] O. Aydin, K. B. Dönmez, M. Gençten, Birol, B. *J Mater Sci Mater Electron*, 36(7) (2025) 428
- [2] B. O. Park, C. D. Lokhande, H. S. Park, K. D. Jung, O. S. Joo *J. Power Sources* 134(1) (2004) 1677-1682
- [3] S. Yasa, B. Birol, K. B. Donmez, M. Gençten *J. Energy Storage* 81 (2024) 110291

I am Caner Korkmaz, a research assistant in the Department of Metallurgical and Materials Engineering at Yıldız Technical University. I hold a B.Sc. degree in Metallurgical and Materials Engineering from Middle East Technical University (METU), graduated in 2022. My research focuses on energy storage devices, particularly supercapacitor electrode materials. I am committed to advancing my expertise and contributing to developments in this field. Presenting author: Caner KORKMAZ, e-mail:canerkorkmaz150@gmail.com tel: +90 552 495 45 61