

La(OH)₃ and La₂O₃ Nanowires as Efficient Catalysts for Hydrogen Production via Sodium Borohydride Metanolysis

Emel Engintepe^{1,2}, Sibel Duman³ and Ayşe Nilgün Akin^{1,2}

¹Kocaeli University, Department of Chemical Engineering, Kocaeli, 41380, Turkey

²AYARGEM, Alternative Fuels R&D Center, Kocaeli University, Kocaeli, 41380, Turkey

³Bingöl University, Department of Chemistry, Bingöl, 12000, Turkey

Hydrogen is a clean energy carrier with high energy density, making it an attractive fuel option. Among various production methods, sodium borohydride (NaBH₄) methanolysis stands out for its safety, fast kinetics, and high hydrogen yield [1]. In this reaction, NaBH₄ reacts with methanol (CH₃OH) to produce hydrogen gas and sodium tetramethoxyborate (NaB(OCH₃)₄):

NaBH₄ is also non-toxic and non-flammable, enhancing its suitability for portable hydrogen systems. While many catalysts have been tested for this reaction, La(OH)₃ and La₂O₃ have not yet been studied. Given their catalytic potential, this work investigates hydrothermally synthesized La(OH)₃ and La₂O₃ nanowires as novel catalysts for NaBH₄ methanolysis, aiming to support sustainable hydrogen generation. The catalysts were characterized using XRD for phase identification, BET for surface area analysis, and FE-SEM for morphological examination. These techniques confirmed the structural and textural properties of the synthesized La(OH)₃ and La₂O₃ nanowire catalysts.

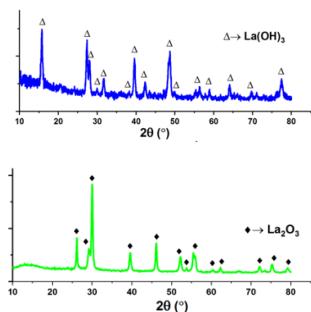


Figure 1. XRD patterns of La(OH)₃ and La₂O₃ nanowires.

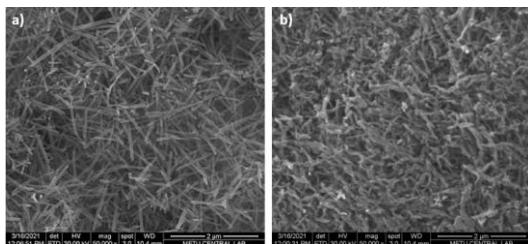


Figure 2. FE-SEM images of (a) La(OH)₃ (b) La₂O₃ nanowires.

Figure 1 demonstrates the formation of lanthanum oxides (La₂O₃) catalysts, while Figure 2 illustrate the FE-SEM images of the prepared La(OH)₃ and La₂O₃ nanowire catalysts. The specific surface area and total pore volume of the catalysts, as summarized in Table 1, show a significant decrease during the phase transformation from La(OH)₃ to La₂O₃.

Table 1. Specific surface area, and total pore volume.

Sample name	Specific surface area (m ² /g)	Total pore volume (cm ³ /g)
La(OH) ₃	35.4	0.190
La ₂ O ₃	26.6	0.139

The experimental setup for NaBH₄ methanolysis and hydrogen gas measurement comprised a 50 mL jacketed reaction flask equipped with a Teflon-coated stir bar and placed on a magnetic stirrer. Temperature regulation was maintained by circulating water through the reactor jacket from a constant-temperature bath (PolyScience water bath). The evolved hydrogen gas was quantified using a graduated glass tube (50 cm in height, 2.5 cm in diameter) filled with water, which was connected to the reaction flask. Additionally, a thermocouple inserted into the reactor ensured precise temperature monitoring [2].

In this work, the catalytic performances of La(OH)₃ and La₂O₃ nanowires are systematically evaluated in terms of hydrogen yield, reaction kinetics, and stability under various operating conditions. The findings of this study provide valuable insights into the design of cost-effective and efficient catalysts for hydrogen generation, contributing to the advancement of clean energy technologies.

Acknowledgment

This work was supported by Kocaeli University Research Fund with Project Numbers: FAA-2025-4323.

References

- [1] Taha T.A.M., Abouhaswa A.S., Mohamed W.S. 2025. Enhanced catalytic performance of magnetic zinc-doped cobalt ferrite nanoparticles. International Journal of Hydrogen Energy 112:133-143.
- [2] Durap F., Zahmakiran M., Ozkar S. 2009. Water soluble laurate-stabilized rhodium(0) nanoclusters catalyst with unprecedented catalytic lifetime in the hydrolytic dehydrogenation of ammonia-borane. Applied Catalysis A: General 369: 53-59.

Ph.D. Emel Engintepe is a researcher at Kocaeli University, Department of Chemical Engineering, and a member of the Alternative Fuels R&D Center (AYARGEM). Her academic work focuses on the development of nanowire-structured lanthanum-based catalysts for the oxidative coupling of methane (OCM). She has expertise in hydrothermal synthesis, material characterization, and catalytic applications for sustainable energy conversion.

Emel Engintepe, e-mail: emel.engintepe@kocaeli.edu.tr tel: +90 (538) 373 41 09