

# Electrochemical Performance of Deep Discharged $\text{Li}_4\text{Ti}_5\text{O}_{12}$ Anode Material for Lithium-Ion Batteries

Halil Şahan<sup>1,2</sup>, Yusuf Taş<sup>3</sup>, Emirhan Selçuk<sup>1,2</sup> and Şaban Patat<sup>1,2</sup>

<sup>1</sup> Erciyes University, Faculty of Science, Department of Chemistry, Kayseri, Türkiye

<sup>2</sup>Erciyes University, Nanotechnology Application and Research Center (ERNAM), Kayseri, Türkiye

<sup>3</sup> ASPİLSAN Energy, Battery Cell and Battery Systems Production Facility, Kayseri, Türk

Lithium titanate ( $\text{Li}_4\text{Ti}_5\text{O}_{12}$ , LTO) is considered a promising anode material for next-generation lithium-ion batteries due to its excellent thermal stability, long cycle life, and intrinsic safety [1]. Its “zero-strain” property during  $\text{Li}^+$  intercalation/deintercalation minimizes volume change and ensures outstanding structural stability [2]. The relatively high voltage plateau (~1.55 V vs.  $\text{Li}/\text{Li}^+$ ) suppresses lithium dendrite formation, providing superior safety compared with graphite anodes [3]. The spinel structure of LTO offers abundant Li-ion sites, allowing a theoretical capacity of 293  $\text{mAh g}^{-1}$  when  $\text{Ti}^{4+}$  is fully reduced to  $\text{Ti}^{3+}$  under deep-discharge conditions near 0 V [4]. However, most studies have examined the 1.0–3.0 V range, with limited attention to performance below 1.0 V [4]. To improve conductivity and  $\text{Li}^+$  diffusivity, doping at Ti or Li sites and *in situ* or *ex situ* carbon coating are effective strategies that enhance electrochemical performance and rate capability [5].

In the present work, we investigate the electrochemical behavior of Na- and Yb-co-doped, carbon-coated LTO anodes under deep-discharge conditions at room temperature. Pristine  $\text{Li}_4\text{Ti}_5\text{O}_{12}$  (LTO) and  $\text{Li}_{3.98}\text{Na}_{0.02}\text{Ti}_{4.98}\text{Yb}_{0.02}\text{O}_{12}$  (LTO–Na–Yb), along with their carbon-coated derivatives (LTO@C and LTO–Na–Yb@C), were synthesized via a conventional solid-state reaction method. The carbon-coated variants were further prepared through an *ex situ* pyrolysis process using organic carbon precursors. Galvanostatic charge–discharge tests were conducted within the potential range of 3.0–0.01 V at current densities of 30, 300, and 500  $\text{mA g}^{-1}$ , respectively. Structural, morphological, and electrochemical properties were comprehensively characterized using X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), galvanostatic cycling, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS).

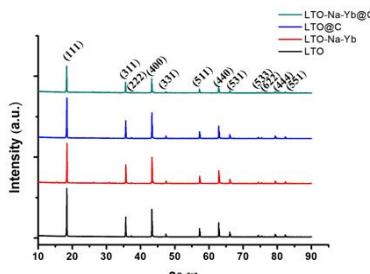



Fig. 1. XRD patterns of the pristine LTO and LTO-Na-Yb, LTO@C, LTO-Na-Yb@C.

The phase purity was analyzed by XRD (PANalytical Empyrean,  $\text{Cu}-\text{K}\alpha$ ,  $2\theta = 10$ –90°). As shown in Fig. 1, both LTO and doped-coated anodes exhibit diffraction peaks

consistent with the cubic spinel structure (JCPDS No. 72-0426). All diffraction peaks correspond to pure cubic LTO, and the refined lattice parameter of pristine LTO and LTO–Na–Yb materials were determined as 8.357 Å and 8.359 Å, respectively.

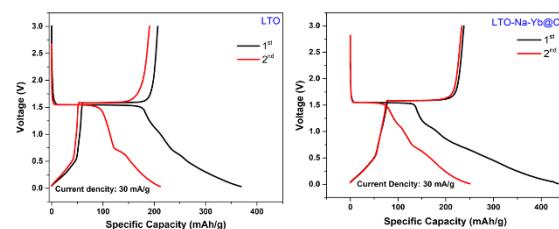



Fig. 2. The charge-discharge profiles of LTO and LTO-Na-Yb@C anodes at 30 mA/g in the range of 0.02–3 V (vs.  $\text{Li}/\text{Li}^+$ )

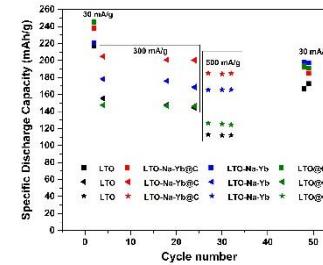



Fig. 3. Rate capabilities of LTO and LTO-Na-Yb, LTO@C, LTO-Na-Yb@C anode materials

As can be seen in Figs. 2 and 3, among all the as-prepared composite anodes, LTO–Na–Yb@C delivers the highest initial discharge capacity across various current densities. Furthermore, it exhibits superior rate capability compared with pristine LTO, LTO–Na–Yb, and LTO@C at 30, 300, and 500  $\text{mA g}^{-1}$ .

## Acknowledgements

The authors thank the Erciyes University Scientific Research Projects Unit for financial support and ASPİLSAN Energy for their support.

## References

- [1] J.-M. Tarascon, M. Armand, *Nature* **414** (6861), 359–367 (2001).
- [2] X. Su, et al., *RSC Advances* **6** (109), 107355–107363 (2016).
- [3] J.E. Hong, K.S. Kim, H.J. Jeon, K.S. Ryu, *J. Electrochem. Sci. Technol.* **1** (1), 72–75 (2021).
- [4] C. Han, et al., *ACS Appl. Mater. Interfaces* **8**, 18788–18796 (2016).
- [5] B.V. Babu, et al., *Results Phys.* **9**, 28



Dr. Yusuf TAŞ is Experienced Electrical and Electronics Engineer with nearly a decade of expertise in the rechargeable battery and machinery industries. Recognized for consistently delivering high-impact results and driving innovation across complex projects. Specialized in lithium-ion and sodium-ion cell technologies, battery testing protocols, quality control systems, and performance optimization of electrochemical storage solutions.

Corresponding author: Yusuf Taş, e-mail:yusuf.tas@aspilsan.com [tel:+90 505 151 38 76](tel:+905051513876)